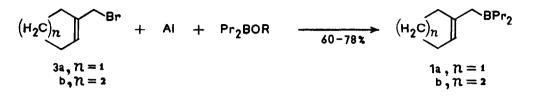
A NEW GENERAL APPROACH TO 2-SUBSTITUTED METHYLENECYCLANES USING 1-(DIALKYLBORYLMETHYL)CYCLOALKENES

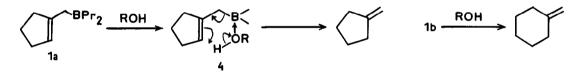
Yuri N. Bubnov and Larisa I. Lavrinovich

N.D.Zelinsky Institute of Organic Chemistry, U.S.S.R. Academy of Sciences, Moscow, U.S.S.R.

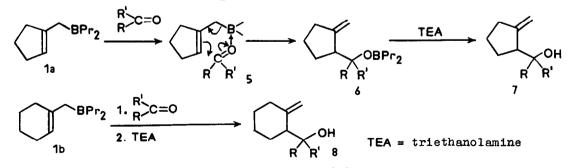
<u>Summary</u>: A novel method for the synthesis of 2-substituted methylenecyclopentanes and methylenecyclohexanes based on the allylboration of carbonyl compounds and alkoxyacetylenes with 1-(dialkylborylmethyl)cyclopentene and -cyclohexene is described.


Methylenecycloalkanes are widely used as key compounds in the synthesis of various natural substances and their analogues, e.g. prostaglandins ^{1a}, iridoids ^{1b,c}, antibiotics ² and as models in investigations of many addition reactions to the C=C bond. The known methods for the preparation of methylene-cyclanes may be divided into three major classes: (1) elimination reactions, mainly pyrolytic ^{3a}, (2) cyclisation and oligomerisation of some unsaturated compounds, e.g. allenes and α, ω -dienes ^{3a}, (3) Wittig and related reactions ^{3a-d}. However, many of them have certain limitations. Therefore the search for new and effective ways to these compounds is still an important aim.

We have developed a new general approach to various 2-substituted methylenecyclanes 2 with the use of previously unknown cycloalkenylmethylboranes of the type 1:


In this paper we describe the synthesis and some reactions of two first representatives of this class of compounds, 1-(dipropylborylmethyl)cyclopentene (\underline{la}) and 1-(dipropylborylmethyl)cyclohexene (lb).

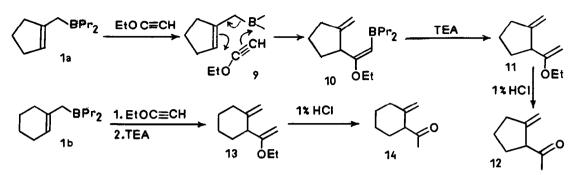
Boranes <u>la</u> and <u>lb</u> are easily obtained by interacting corresponding bromide $(\underline{3a, b})$, boron ester Pr₂BOR and aluminum (Table).



This method was previously used for the preparation of allyl-, metallyl-, crotyl- and prenyl(dialkyl)boranes 4 as well as a new isoprenylating reagent, 2-(dipropylborylmethyl)-1,3-butadiene 5.

l-(Dipropylborylmethyl)cycloalkenes <u>la</u> and <u>lb</u> belong to allylic derivatives of boron and possess the high specific reactivity of this type of organoboranes ⁶.They are cleaved by water and alcohols to form Pr₂BOR and methylenecyclopentane (b.p. 76-77°C, n_D^{22} 1.4332) or methylenecyclohexane (b.p. 99-101°C, n_D^{22} 1.4465), respectively (purity>97%), thus showing the protolysis to take place with the allylic rearrangement (<u>4</u>).

Similarly to simple \Re , \forall -unsaturated boron derivatives ^{6,7}, <u>la</u> and <u>lb</u> add to organic compounds with multiple bonds. Thus reactions with aliphatic and aromatic aldehydes and ketones as well as with conjugated enones at -30 + 0°C lead to esters <u>6</u>, reesterification of which with higher alcohols furnishes corresponding carbinols 7 and 8.


Cis-allylboration of acetylene compounds 6,8 represents one more significant reaction of β, γ -unsaturated triorganoboranes. This reaction is the first stage of the allylboron-acetylene condensation 6,9 and leads to 1,4-pentadienyl boron compounds.

We have established that boranes <u>la</u> and <u>lb</u> add to ethoxyacetylene quantitatively at $-30 \div 0^{\circ}$ C to form cis-addition products of the type 10.

Table	9
-------	---

Compound ¹) _R	 R ′	Yield ²⁾ B.P.			IR	¹ H NMR (§ , ppm)	
	K	ĸ	xieid %	B.P. C/mmHg	°C)	$\mathbf{y}_{C=C}$ cm ⁻¹	C=CH	C=CH ₂
	'2 –	-	78	43/1	1.4542 (23.5)	1649	5.10 ³⁾	
	`2 	-	61	50/1	1.4583 (23.5)	1667	5.10 ⁴⁾	
ССон	a Me	н	70	55-57/7	1.4769 (20)	1650		4. 87 m
R' 'R 7	b Me	Me	87	61-62/7	1.4711 (21)	1650		4.90 m
	c Me	CH=CH ₂	75	68-69/1	1.4862 (21)	1650	(5.95 m)	5.05 m
. <u></u>	d 🎝	_ н	40.5	63-65/1	1.5112 (21)	1655		4.87 m
Сон	a Me	Н	74	69-71/7	1.4812 (22)	1648		4.57-4.80
B R R R'	b Me	CH=CH ₂	68.5	81-83/7	1.4932 (22)	1645	5.93 (two dd)	4.68 m
	-	-	84.5	49-50/7	1.4625 (20)	1600 1655		3.77, 3.84 4.85 m
	-	-	74	48-49/7	1.4598 (18)	1648		4.93 m ⁵⁾
13 OEt	-	-	82	67-68/7	1.4712 (21)	1600 1653		3.83 m 4.43-4.68
	4	_	70	55/7	1.4701 (23.5)	1648		4.64 m ⁶⁾ 4.77 m

1) Satisfactory elemental analysis was obtained; 2) Product was isolated by distillation; 3) $\delta_{B-CH_2} = 2.12 \text{ ppm}; 4$ $\delta_{B-CH_2} = 1.93 \text{ ppm}; 5$ $\delta_{CH_3} = 2.08 \text{ ppm}; 5$ $\delta_{CH_3} = 2.0 \text{ ppm}.$

The B-C_{sp}² bond in adducts <u>10</u> is easily split (0 + 20^OC) by alcohols to give 2-(α -ethoxyvinyl)-l-methylenecycloalkanes <u>11</u> and <u>13</u>. These are hydroly-sed with 1% HCl to produce 2-acetyl-l-methylenecycloalkanes <u>12</u> and <u>14</u>(Table).

The exclusive formation of the exo-methylene products (Table) in the allylboration of carbonyl compounds and ethoxyacetylene with boranes <u>la</u> and <u>lb</u> confirms unambigously that these reactions occur totally with allylic rearrangement (5 or 9) apparently in concerted processes.

A cyclic allylborane of another type, cyclohex-2-enyl(diisopinocampheyl)borane, has been used by Brown in the reaction with MeCHO 10 .

<u>Acknowledgement</u>. The authors are indebted to Professor N.K.Kochetkov for his interest to this work and for stimulating discussions of the results.

References

- a) J.S.Bindra, in: "The Total Synthesis of Natural Compounds", vol.4, ed. J.ApSimon, Wiley & Sons, 1981, pp.353-449; b) K.Mori, ibid., pp.1-183;
 c) A.F.Thomas and Y.Bessiere, ibid., pp.451-491.
- 2. Y.Kobayashi, I.Tsuji, Tetrahedron Lett., <u>22</u>, 4295 (1981); R.K.Boeckman, P.C.Naegeli, S.D.Arthur, J.Org.Chem., <u>45</u>, 752 (1980).
- 3. a) Houben-Weyl Methoden der Organischen Chemie, B. 5/lb, G.Thieme Verlag, Stuttgart, 1972; b) A.Maerker, Org.Reactions, vol.14, Ed.A.C.Cope, Wiley & Sons, N-Y, 1965, pp.270-480; c) A.W.Johnson, Ylid Chemistry, Academic Press, N-Y, 1966; d) L.A.Paquette, Science, 217, 793 (1982).
- 4. B.M.Mikhailov, Yu.N.Bubnov, A.V.Tsyban', Izv.Akad.Nauk SSSR, Ser.Khim., <u>1975</u>, 979; <u>1978</u>, 1586; J.Organometal.Chem., <u>154</u>, 113 (1978).
- 5. Yu.N.Bubnov, M.Yu.Etinger, Tetrahedron Lett., (1985), in press.
- B.M.Mikhailov, Yu.N.Bubnov, Organoboron Compounds in Organic Synthesis, Harwood Academic Publishers, 1984, p.569.
- 7. B.M.Mikhailov, Yu.N.Bubnov, Izv.Akad.Nauk SSSR, Ser.Khim., <u>1964</u>, 1874; B.M.Mikhailov, Yu.N.Bubnov, A.V.Tsyban', J.Organometal.Chem., <u>154</u>, 131 (1978).
- Yu.N.Bubnov, M.Sh.Grigorian, A.V.Tsyban', B.M.Mikhailov, Synthesis, <u>1980</u>, 902; B.M.Mikhailov, Yu.N.Bubnov, S.A.Korobeinikova, S.I.Frolov, J.Organometal.Chem., <u>27</u>, 165 (1971).
 B.M.Mikhailov, Yu.N.Bubnov, S.I.Frolov, Izv.Akad.Nauk SSSR, Ser.Khim.,
- B.M.Mikhailov, Yu.N.Bubnov, S.I.Frolov, Izv.Akad.Nauk SSSR, Ser.Khim., 1967, 2290.
- 10. H.C.Brown, P.K.Jadhav, K.S.Bhat, J.Amer.Chem.Soc., <u>107</u>, 2564 (1985).

(Received in UK 14 June 1985)